-
오펜하이머, 노벨상 그리고 주식 (1) - 수학 이야기생각 모음/주식생각 2023. 8. 14. 19:58728x90
오펜하이머 내일 개봉한다며. 과학도로써 이 떡밥에 빠질 수가 없지.
믿던가 말던가 나는 생명, 화학을 전공했고 수학은 선형대수 ~ 미분 방정식 구간에서 포기했는데 그럼에도 불구하고 양자역학이랑 수학에 상당히 관심이 있었음. 약간 지구 평평설, 음모론자 같은 소리지만 필즈상 수상하신 허준이 교수님이 그랬는지 슈카형이 그랬는지 아무튼 그런 이야기 했단 말임. 세상에 직관적으로 답이 될것 같은 것들을 아름다운 수식과 기술로 설명해내다보면 대자연에는 어떤 법칙이 있는건 아닐까?
예를 들어서 1, 1, 2, 3, 5, 8 로 앞에 2개 수를 더한 합이 이어지는 피보나치 수열과 어느항이든 뒤에거를 앞에것으로 나누면 1.618xxxx이라는 어느 값에 근사해진다는 비율이 있음. 이건 해바라기나 달팽이 같은 자연계 뿐 아니라 우리가 잘 아는 신용카드나 태블릿의 황금비율, 주식에서 반등이 나오는 타점 잡는데도 활용하는 등 상당히 자연의 절대법칙스러운 기묘한 비율임.
그리고 내가 흥미를 느꼈던 부분은 이거였는데 4색지도 존나 어려워보이잖아. 어케 접근해야할지도 모르겠음. 그런데 이건 구역을 점, 경계를 선으로 생각한 그래프 이론으로 증명할 수 있다는거임 ㄷㄷㄷㄷㄷ
그리고 이런 증명은 보통 수학적으로 하나의 완성된 식 + 수학적 귀납법으로 완성하니까 결국 몇가지 난제에 대한 하나의 식이 나오는거임.
수학적 귀납법이 뭐냐하면 예를 들어서 '2부터 +2를 계속하면 영원히 짝수인가?' 라는 가설이 있으면 이런식으로 증명함
이 수학적 귀납법의 대표적인 예시로 이두희의 예쁨 증명이 있음. 오늘 예뻤다. 내일도 오늘만큼 예쁘다, 그러니 미래의 어느날을 짚어도 너는 예쁠것이다. 캬... 이거야말로 영원한 아름다움을 수학적으로 증명한거 아니겠습니까... 낭만...★
아무튼 리먼가설부터 몇가지 난제들을 푸는 방법은 대부분 하나의 식을 만들어내는 방법으로 증명하는데 그때 이 모든 식의 결과값 - 예를 들어서 1번째 값, 2번째 값. 등이 있는 위치를 찾다보면 저런 하나의 '패턴'이 보이는거임. 그래서 이게 어떤 대자연이 숨겨놓은 식이나 비율, 법칙 같은게 있지 않을까...
이게 더 놀라운 점은 비단 수학 하나의 이야기가 아닌거임. 양자역학이라는 다소 수학적인 학문이긴 하지만 예를 들어서 소수 있잖아. 약수가 1과 자신밖에 없는 수. 그 수들이 점점 텀이 멀어지는거임. 2, 3, 5, 7, 11. 그래서 4번째 소수는 어디있을까? 7입니다. 그럼 224번째 소수는요? 하는 그 일반식이랑 원자핵의 에너지 분포를 나타낸 식이 기묘하게 유사한거임.
이거 어떻게 발견했냐면 수학자랑 과학자랑 티타임 가지면서 서로 연구중인거 이야기했더니 어 비슷한데요? 하고 발견했다함 ㄷㄷㄷ;; 그래서 친구 잘사귀어야됨 ㄷㄷㄷ;;;
아무튼 이런 서사야 영화 만드는 사람들이나 필요하고 나는 감동 같은거 잘 못느끼지만 머... 개인적으로 놀란 감독님 좋아하니까 팬심으로 볼듯? 인셉션, 테넷, 인터스텔라 같은 과학 덕후인듯 ㄷㄷ
'생각 모음 > 주식생각' 카테고리의 다른 글
오펜하이머, 노벨상 그리고 주식 (3) - 주식 이야기 (1) 2023.08.14 오펜하이머, 노벨상 그리고 주식 (2) - 과학 이야기 (1) 2023.08.14 대여새끼들아 내 블로그에 홍보 좀 하지마 (0) 2023.05.13 23.05.10 오래간만에 시장점검 (1) 2023.05.10 투자주의 종목 팁 (0) 2023.04.27